Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 24(2): 196-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34126808

RESUMO

Azoxystrobin (strobilurin fungicide) and imidacloprid (neonicotinoid insecticide) have been detected in surface waters near treated agricultural, urban, and mixed landscapes. The hazards of pesticide runoff can be prevented through best management practices, including the establishment of diverse wetland plant barriers that can phytoremediate the chemicals in which they come into contact with. In this study, the wetland plant species softrush (Juncus effusus), pickerelweed (Pontederia cordata), and arrowhead (Sagittaria latifolia) were planted in sandy soil containers that were then placed in azoxystrobin or imidacloprid treated water. Every week for 2 months, water samples were collected for pesticide residue analysis using high-performance liquid chromatography (HPLC). At 14, 28, and 56 days after initiation, plants were destructively harvested and analyzed for pesticide residue in soil, above-ground vegetation, and below-ground vegetation. Results from this study report P. cordata reduced greater azoxystrobin (51.7% reduction compared to treated non-planted containers) compared to J. effusus and S. latifolia (24.9% and 28.7% reduction from non-planted containers) at 56 days. However, S. latifolia reduced greater imidacloprid (79.3% reduction compared to non-planted containers) compared to J. effusus and P. cordata (36.0% and 37.1% reduction from non-planted containers) at 56 days.Novelty statement: While research has found that wetland plants can absorb and remediate synthetic chemicals, this practice is only sustainable if used with native plants that require low maintenance and are tolerant to the applied substances. Various previous studies observe plants that are fast-growing, tolerant to environmental conditions, require low-maintenance, and are hardy. However, these plant species are not always suitable for any location and are often considered invasive and/or weed-like. The present research initiates a list of plant species which can be used within the southeastern United States and similar areas to phytoremediate commonly used pesticides azoxystrobin and imidacloprid and prevent off-target movement into sensitive water systems.


Assuntos
Pontederiaceae , Sagittaria , Poluentes Químicos da Água , Biodegradação Ambiental , Neonicotinoides , Nitrocompostos , Pirimidinas , Estrobilurinas , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Int J Phytoremediation ; 24(2): 187-195, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34098815

RESUMO

Pesticides can move off-target resulting in contamination of sensitive water bodies and causing adverse effects on inhabiting species. Through best management practices, such as the implementation of vegetative buffer strips, off-target movement of pesticides can be decreased, and compound degradation can be increased via phytoremediation. In this study, blueflag iris (Iris versicolor), broomsedge (Andropogon virginicus) and switchgrass (Panicum virgatum) were planted in soil treated with one of three commonly used pesticides. At 28, 56 and 112 days after treatment (DAT), plants were destructively harvested and analyzed for pesticide residue in soil and above-ground and below-ground vegetation using high-performance liquid chromatography (HPLC). Relative to the amount of pesticide found in planted pots compared to non-planted pots, I. versicolor was found to reduce greater atrazine in soil compared to non-planted pots at 112 DAT by 58.7%. I. versicolor was also the most capable of reducing azoxystrobin, by 86.9% compared to non-planted pots, from the soil at 112 DAT. At the same sampling time, I. versicolor and P. virgatum reduced greater imidacloprid from soil by 62.5% and 64.3% compared to non-planted pots, respectively. This information supports the recommendation for establishment of diverse plant species for optimization of phytoremediation capacities. Novelty statement While research has found that plants can absorb and remediate synthetic chemicals, this practice is only sustainable if used with native plants that require low maintenance and are tolerant to the applied substances. Various previous studies observe plants that are fast-growing, tolerant to environmental conditions, require low-maintenance, and are hardy. However, these plant species are not always suitable for any location and are often considered invasive and/or weed-like. The present research initiates a list of plant species which can be used within the southeastern United States and similar areas to phytoremediate commonly used pesticides atrazine, azoxystrobin, and imidacloprid and prevent off-target movement.


Assuntos
Atrazina , Poluentes do Solo , Biodegradação Ambiental , Neonicotinoides , Nitrocompostos , Pirimidinas , Poluentes do Solo/análise , Estrobilurinas
3.
Pest Manag Sci ; 76(4): 1386-1392, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31622004

RESUMO

BACKGROUND: Unmanned aerial vehicles (UAVs) have been used in agriculture to collect imagery for crop and pest monitoring, and for decision-making purposes. Spraying-capable UAVs are now commercially available worldwide for agricultural applications. Combining UAV weed mapping and UAV sprayers into an UAV integrated system (UAV-IS) can offer a new alternative to implement site-specific pest management. RESULTS: The UAV-IS was 0.3- to 3-fold more efficient at identifying and treating target weedy areas, while minimizing treatment on non-weedy areas, than ground-based broadcast applications. The UAV-IS treated 20-60% less area than ground-based broadcast applications, but also missed up to 26% of the target weedy area, while broadcast applications covered almost the entire experimental area and only missed 2-3% of the target weeds. The efficiency of UAV-IS management practices increased as weed spatial aggregation increased (patchiness). CONCLUSION: Integrating UAV imagery for pest mapping and UAV sprayers can provide a new strategy for integrated pest management programs to improve efficiency and efficacy while reducing the amount of pesticide being applied. The UAV-IS has the potential to improve the detection and control of weed escapes to reduce/delay herbicide resistance evolution. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Plantas Daninhas , Tecnologia de Sensoriamento Remoto , Agricultura , Controle de Plantas Daninhas
4.
J Environ Qual ; 45(6): 2030-2037, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27898773

RESUMO

Research has shown that pesticide residue in clippings from previously treated turfgrass may become bioavailable as grass decomposes, adversely affecting off-target organisms. We conducted a field study to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) and azoxystrobin (methyl(E)-2-{2[6-(2-cyanophenoxy)pyrmidin-4-yloxy]phenyl}-3-methoxyacrylate) residues in turfgrass clippings collected from hybrid bermudagrass [ (L.) Pers. × Burtt-Davy], tall fescue [ (Schreb.) S.J. Darbyshire], and zoysiagrass ( Steud.). A subsequent greenhouse experiment was conducted to measure pesticide release from clippings into water. 2,4-D (1.6 kg a.i. ha) and azoxystrobin (0.6 kg a.i. ha) were applied to field plots at 32, 16, 8, 4, 2, 1, or 0 d before collection of the clippings. Clippings were collected from each experimental unit to quantify pesticide release from clippings into water. Both 2,4-D and azoxystrobin were detected when turfgrass was treated over the 32-d experimental period, suggesting that clipping management should be implemented for an extended period of time after application. Pesticide residue was detected in all water samples collected, confirming 2,4-D and azoxystrobin release from turfgrass clippings; however, pesticide release varied between compounds. Two days after clippings were incorporated in water, 39 and 10% of 2,4-D and azoxystrobin were released from clippings, respectively. Our research supports the currently recommended practice of returning clippings to the turfgrass stand when mowing because removal of 2,4-D and azoxystrobin in clippings may reduce pest control and cause adverse off-target impacts.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Resíduos de Praguicidas/análise , Pirimidinas/análise , Poluentes do Solo/análise , Estrobilurinas/análise , Ácido 2,4-Diclorofenoxiacético/química , Cynodon , Fungicidas Industriais , Metacrilatos , Resíduos de Praguicidas/química , Poaceae , Pirimidinas/química , Poluentes do Solo/química , Estrobilurinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...